birdnet package¶
Subpackages¶
- birdnet.acoustic_models package
- Subpackages
- birdnet.acoustic_models.inference package
- Subpackages
- Submodules
- birdnet.acoustic_models.inference.benchmarking module
- birdnet.acoustic_models.inference.consumer module
- birdnet.acoustic_models.inference.files_analyzer module
- birdnet.acoustic_models.inference.perf_tracker module
- birdnet.acoustic_models.inference.producer module
- birdnet.acoustic_models.inference.result_base module
- birdnet.acoustic_models.inference.tensor module
- birdnet.acoustic_models.inference.worker module
- Module contents
- birdnet.acoustic_models.inference_pipeline package
- Submodules
- birdnet.acoustic_models.inference_pipeline.api module
- birdnet.acoustic_models.inference_pipeline.configs module
- birdnet.acoustic_models.inference_pipeline.encoding_strategy module
- birdnet.acoustic_models.inference_pipeline.logs module
- birdnet.acoustic_models.inference_pipeline.prediction_strategy module
- birdnet.acoustic_models.inference_pipeline.processes module
- birdnet.acoustic_models.inference_pipeline.resources module
- birdnet.acoustic_models.inference_pipeline.session module
- birdnet.acoustic_models.inference_pipeline.strategy module
- Module contents
- birdnet.acoustic_models.perch_v2 package
- birdnet.acoustic_models.v2_4 package
- birdnet.acoustic_models.inference package
- Submodules
- birdnet.acoustic_models.base module
- Module contents
- Subpackages
- birdnet.geo_models package
Submodules¶
birdnet.argparse_helper module¶
birdnet.backends module¶
birdnet.base module¶
birdnet.benchmark_script module¶
birdnet.globals module¶
birdnet.helper module¶
birdnet.local_data module¶
birdnet.logging_utils module¶
birdnet.model_loader module¶
Module for loading models. Provides functions to load official and custom models.
- birdnet.model_loader.load(model_type, version, backend, /, *, precision='fp32', lang='en_us', **model_kwargs)¶
- Return type:
ModelBase
- birdnet.model_loader.load_custom(model_type, version, backend, model, species_list, /, *, precision='fp32', check_validity=True, **model_kwargs)¶
- Return type:
ModelBase
- birdnet.model_loader.load_perch_v2(device)¶
- Return type:
birdnet.shm module¶
birdnet.utils module¶
Module contents¶
- class birdnet.AcousticDataEncodingResult(tensor, input_durations, segment_duration_s, overlap_duration_s, speed, model_path, model_fmin, model_fmax, model_sr, model_precision, model_version)¶
Bases:
AcousticEncodingResultBase- Attributes:
- embeddings
- embeddings_masked
- emd_dim
- input_durations
- inputs
- max_n_segments
- memory_size_mb
- model_fmax
- model_fmin
- model_path
- model_precision
- model_sr
- model_version
- n_inputs
- overlap_duration_s
- segment_duration_s
- speed
Methods
load
save
unprocessable_inputs
- class birdnet.AcousticDataPredictionResult(tensor, species_list, input_durations, segment_duration_s, overlap_duration_s, speed, model_path, model_fmin, model_fmax, model_sr, model_precision, model_version)¶
Bases:
AcousticPredictionResultBase- Attributes:
- input_durations
- inputs
- max_n_segments
- memory_size_mb
- model_fmax
- model_fmin
- model_path
- model_precision
- model_sr
- model_version
- n_inputs
- n_species
- overlap_duration_s
- segment_duration_s
- species_ids
- species_list
- species_masked
- species_probs
- speed
- top_k
- unprocessable_inputs
Methods
load
save
to_arrow_table
to_csv
to_dataframe
to_parquet
to_structured_array
- class birdnet.AcousticEncodingResultBase(inputs, input_durations, model_path, model_fmin, model_fmax, model_sr, model_precision, model_version, segment_duration_s, overlap_duration_s, speed, tensor)¶
Bases:
AcousticResultBase- Attributes:
- embeddings
- embeddings_masked
- emd_dim
- input_durations
- inputs
- max_n_segments
- memory_size_mb
- model_fmax
- model_fmin
- model_path
- model_precision
- model_sr
- model_version
- n_inputs
- overlap_duration_s
- segment_duration_s
- speed
Methods
load
save
unprocessable_inputs
- property embeddings: ndarray¶
- property embeddings_masked: ndarray¶
- property emd_dim: int¶
- property max_n_segments: int¶
- property memory_size_mb: float¶
- unprocessable_inputs()¶
- Return type:
ndarray
- class birdnet.AcousticEncodingSession(species_list, model_path, model_segment_size_s, model_sample_rate, model_is_custom, model_sig_fmin, model_sig_fmax, model_version, model_backend_type, model_backend_custom_kwargs, model_emb_dim, *, n_producers, n_workers, batch_size, prefetch_ratio, overlap_duration_s, speed, bandpass_fmin, bandpass_fmax, half_precision, max_audio_duration_min, show_stats, progress_callback, device, max_n_files)¶
Bases:
AcousticSessionBaseMethods
cancel
end
run
run_arrays
- run(inputs)¶
- Return type:
- run_arrays(inputs)¶
- Return type:
- class birdnet.AcousticFileEncodingResult(tensor, files, file_durations, segment_duration_s, overlap_duration_s, speed, model_path, model_fmin, model_fmax, model_sr, model_precision, model_version)¶
Bases:
AcousticEncodingResultBase- Attributes:
- embeddings
- embeddings_masked
- emd_dim
- input_durations
- inputs
- max_n_segments
- memory_size_mb
- model_fmax
- model_fmin
- model_path
- model_precision
- model_sr
- model_version
- n_inputs
- overlap_duration_s
- segment_duration_s
- speed
Methods
load
save
unprocessable_inputs
- class birdnet.AcousticFilePredictionResult(tensor, files, species_list, file_durations, segment_duration_s, overlap_duration_s, speed, model_path, model_fmin, model_fmax, model_sr, model_precision, model_version)¶
Bases:
AcousticPredictionResultBase- Attributes:
- input_durations
- inputs
- max_n_segments
- memory_size_mb
- model_fmax
- model_fmin
- model_path
- model_precision
- model_sr
- model_version
- n_inputs
- n_species
- overlap_duration_s
- segment_duration_s
- species_ids
- species_list
- species_masked
- species_probs
- speed
- top_k
- unprocessable_inputs
Methods
get_unprocessed_files
load
save
to_arrow_table
to_csv
to_dataframe
to_parquet
to_structured_array
- get_unprocessed_files()¶
- Return type:
set[Path]
- class birdnet.AcousticModelPerchV2(model_path, species_list, is_custom_model, backend_type, backend_kwargs)¶
Bases:
AcousticModelBase- Attributes:
- is_custom_model
- model_path
- n_species
- species_list
Methods
encode
encode_session
get_embeddings_dim
get_sample_rate
get_segment_size_s
get_segment_size_samples
get_sig_fmax
get_sig_fmin
get_version
load
load_custom
predict
predict_session
- encode(inp, /, *, n_producers=1, n_workers=None, batch_size=1, prefetch_ratio=1, overlap_duration_s=0, speed=1.0, bandpass_fmin=0, bandpass_fmax=15000, half_precision=False, max_audio_duration_min=None, show_stats=None, progress_callback=None, device='CPU', max_n_files=65536)¶
- Return type:
- encode_session(*, n_producers=1, n_workers=None, batch_size=1, prefetch_ratio=1, overlap_duration_s=0, speed=1.0, bandpass_fmin=0, bandpass_fmax=15000, half_precision=False, max_audio_duration_min=None, show_stats=None, progress_callback=None, device='CPU', max_n_files=65536)¶
- Return type:
- classmethod get_embeddings_dim()¶
- Return type:
int
- classmethod get_sample_rate()¶
- Return type:
int
- classmethod get_segment_size_s()¶
- Return type:
float
- classmethod get_segment_size_samples()¶
- Return type:
int
- classmethod get_sig_fmax()¶
- Return type:
int
- classmethod get_sig_fmin()¶
- Return type:
int
- classmethod get_version()¶
- Return type:
Literal['2.4']
- classmethod load(model_path, species_list, backend_type, backend_kwargs)¶
- Return type:
- classmethod load_custom(model_path, species_list, backend_type, backend_kwargs, check_validity)¶
- Return type:
- predict(inp, /, *, top_k=5, n_producers=1, n_workers=None, batch_size=1, prefetch_ratio=1, overlap_duration_s=0, bandpass_fmin=0, bandpass_fmax=15000, speed=1.0, apply_sigmoid=False, sigmoid_sensitivity=None, default_confidence_threshold=0.1, custom_confidence_thresholds=None, custom_species_list=None, half_precision=False, max_audio_duration_min=None, device='CPU', show_stats=None, progress_callback=None)¶
- Return type:
- predict_session(*, top_k=5, n_producers=1, n_workers=None, batch_size=1, prefetch_ratio=1, overlap_duration_s=0, speed=1.0, bandpass_fmin=0, bandpass_fmax=15000, apply_sigmoid=False, sigmoid_sensitivity=None, default_confidence_threshold=0.1, custom_confidence_thresholds=None, custom_species_list=None, half_precision=False, max_audio_duration_min=None, show_stats=None, progress_callback=None, device='CPU', max_n_files=65536)¶
- Return type:
- class birdnet.AcousticModelV2_4(model_path, species_list, is_custom_model, backend_type, backend_kwargs)¶
Bases:
AcousticModelBase- Attributes:
- is_custom_model
- model_path
- n_species
- species_list
Methods
encode
encode_session
get_embeddings_dim
get_sample_rate
get_segment_size_s
get_segment_size_samples
get_sig_fmax
get_sig_fmin
get_version
load
load_custom
predict
predict_session
- encode(inp, /, *, n_producers=1, n_workers=None, batch_size=1, prefetch_ratio=1, overlap_duration_s=0, speed=1.0, bandpass_fmin=0, bandpass_fmax=15000, half_precision=False, max_audio_duration_min=None, show_stats=None, progress_callback=None, device='CPU', max_n_files=65536)¶
- Return type:
- encode_session(*, n_producers=1, n_workers=None, batch_size=1, prefetch_ratio=1, overlap_duration_s=0, speed=1.0, bandpass_fmin=0, bandpass_fmax=15000, half_precision=False, max_audio_duration_min=None, show_stats=None, progress_callback=None, device='CPU', max_n_files=65536)¶
- Return type:
- classmethod get_embeddings_dim()¶
- Return type:
int
- classmethod get_sample_rate()¶
- Return type:
int
- classmethod get_segment_size_s()¶
- Return type:
float
- classmethod get_segment_size_samples()¶
- Return type:
int
- classmethod get_sig_fmax()¶
- Return type:
int
- classmethod get_sig_fmin()¶
- Return type:
int
- classmethod get_version()¶
- Return type:
Literal['2.4']
- classmethod load(model_path, species_list, backend_type, backend_kwargs)¶
- Return type:
- classmethod load_custom(model_path, species_list, backend_type, backend_kwargs, check_validity)¶
- Return type:
- predict(inp, /, *, top_k=5, n_producers=1, n_workers=None, batch_size=1, prefetch_ratio=1, overlap_duration_s=0, bandpass_fmin=0, bandpass_fmax=15000, speed=1.0, apply_sigmoid=True, sigmoid_sensitivity=1.0, default_confidence_threshold=0.1, custom_confidence_thresholds=None, custom_species_list=None, half_precision=False, max_audio_duration_min=None, device='CPU', show_stats=None, progress_callback=None)¶
- Return type:
- predict_session(*, top_k=5, n_producers=1, n_workers=None, batch_size=1, prefetch_ratio=1, overlap_duration_s=0, speed=1.0, bandpass_fmin=0, bandpass_fmax=15000, apply_sigmoid=True, sigmoid_sensitivity=1.0, default_confidence_threshold=0.1, custom_confidence_thresholds=None, custom_species_list=None, half_precision=False, max_audio_duration_min=None, show_stats=None, progress_callback=None, device='CPU', max_n_files=65536)¶
- Return type:
- class birdnet.AcousticPredictionResultBase(inputs, input_durations, model_path, model_fmin, model_fmax, model_sr, model_precision, model_version, species_list, segment_duration_s, overlap_duration_s, speed, tensor)¶
Bases:
AcousticResultBase- Attributes:
- input_durations
- inputs
- max_n_segments
- memory_size_mb
- model_fmax
- model_fmin
- model_path
- model_precision
- model_sr
- model_version
- n_inputs
- n_species
- overlap_duration_s
- segment_duration_s
- species_ids
- species_list
- species_masked
- species_probs
- speed
- top_k
- unprocessable_inputs
Methods
load
save
to_arrow_table
to_csv
to_dataframe
to_parquet
to_structured_array
- property max_n_segments: int¶
- property memory_size_mb: float¶
- property n_species: int¶
- property species_ids: ndarray¶
- property species_list: ndarray¶
- property species_masked: ndarray¶
- property species_probs: ndarray¶
- to_arrow_table()¶
- Return type:
Table
- to_csv(path, *, encoding='utf-8', buffer_size_kb=1024, silent=False)¶
- Return type:
None
- to_dataframe()¶
- Return type:
DataFrame
- to_parquet(path, *, compression='snappy', compression_level=None, silent=False)¶
- Return type:
None
- to_structured_array()¶
- Return type:
ndarray
- property top_k: int¶
- property unprocessable_inputs: ndarray¶
- class birdnet.AcousticPredictionSession(species_list, model_path, model_segment_size_s, model_sample_rate, model_is_custom, model_sig_fmin, model_sig_fmax, model_version, model_backend_type, model_backend_custom_kwargs, *, top_k, n_producers, n_workers, batch_size=1, prefetch_ratio=1, overlap_duration_s, speed, bandpass_fmin, bandpass_fmax, apply_sigmoid, sigmoid_sensitivity, default_confidence_threshold, custom_confidence_thresholds, custom_species_list, half_precision=True, max_audio_duration_min, show_stats, progress_callback, device, max_n_files)¶
Bases:
AcousticSessionBaseMethods
cancel
end
run
run_arrays
- run(inputs)¶
- Return type:
- run_arrays(inputs)¶
- Return type:
- class birdnet.AcousticProgressStats(worker_speed_xrt=None, worker_speed_seg_per_s=None, progress=None, est_remaining_time_s=None, progress_current=0, progress_total=None)¶
Bases:
object- Attributes:
- est_remaining_time_s
- progress
- progress_total
- worker_speed_seg_per_s
- worker_speed_xrt
-
est_remaining_time_s:
float|None= None¶
-
progress:
float|None= None¶
-
progress_current:
int|None= 0¶
-
progress_total:
int|None= None¶
-
worker_speed_seg_per_s:
float|None= None¶
-
worker_speed_xrt:
float|None= None¶
- class birdnet.GeoModelV2_4(model_path, species_list, is_custom_model, backend_type, backend_kwargs)¶
Bases:
GeoModelBase- Attributes:
- is_custom_model
- model_path
- n_species
- species_list
Methods
get_model_type
get_version
load
load_custom
predict
predict_session
- classmethod get_model_type()¶
- Return type:
Literal['acoustic','geo']
- classmethod get_version()¶
- Return type:
Literal['2.4']
- classmethod load(model_path, species_list, backend_type, backend_kwargs)¶
- Return type:
- classmethod load_custom(model_path, species_list, backend_type, backend_kwargs, check_validity)¶
- Return type:
- predict(latitude, longitude, /, *, week=None, min_confidence=0.03, half_precision=False, device='CPU')¶
- Return type:
- predict_session(*, min_confidence=0.03, half_precision=False, device='CPU')¶
- Return type:
- class birdnet.GeoPredictionResult(model_path, model_version, model_precision, latitude, longitude, week, species_masked, species_ids, species_probs, species_list)¶
Bases:
ResultBase- Attributes:
- latitude
- longitude
- memory_size_mb
- model_path
- model_precision
- model_version
- n_species
- species_ids
- species_list
- species_masked
- species_probs
- week
Methods
load
save
to_arrow_table
to_csv
to_dataframe
to_set
to_structured_array
to_txt
- property latitude: int¶
- property longitude: int¶
- property memory_size_mb: float¶
- property n_species: int¶
- property species_ids: ndarray¶
- property species_list: ndarray¶
- property species_masked: ndarray¶
- property species_probs: ndarray¶
- to_arrow_table(sort_by='species')¶
- Return type:
Table
- to_csv(csv_out_path, sort_by='species', encoding='utf8')¶
- Return type:
None
- to_dataframe(sort_by='species')¶
- Return type:
DataFrame
- to_set()¶
- Return type:
set[str]
- to_structured_array(sort_by='species')¶
- Return type:
ndarray
- to_txt(txt_out_path, sort_by='species', encoding='utf8')¶
- Return type:
None
- property week: int¶
- class birdnet.GeoPredictionSession(species_list, model_path, model_is_custom, model_version, model_backend_type, model_backend_custom_kwargs, *, min_confidence, half_precision, device)¶
Bases:
GeoSessionBaseMethods
run
- run(latitude, longitude, /, *, week=None)¶
- Return type:
- birdnet.get_package_logger()¶
- Return type:
Logger
- birdnet.load(model_type, version, backend, /, *, precision='fp32', lang='en_us', **model_kwargs)¶
- Return type:
ModelBase
- birdnet.load_custom(model_type, version, backend, model, species_list, /, *, precision='fp32', check_validity=True, **model_kwargs)¶
- Return type:
ModelBase
- birdnet.load_perch_v2(device)¶
- Return type: